In situ measurement of water absorption by fine roots of three temperate trees: species differences and differential activity of superficial and deep roots.
نویسندگان
چکیده
The spatial heterogeneity of water uptake by fine roots under field conditions was analyzed in situ with miniature sap flow gauges in a mature beech-oak-spruce mixed stand. Sap flow rate (J), sap flow density (Jd), and root surface-area-specific flow rate (uptake rate, Js) were measured for eight to 10 small-diameter roots (3-4 mm) per species in the organic layer (superficial roots) and in the mineral soil (30-80 cm, deep roots) during four months in summer 1999. We calculated Js by relating J to the surface area of the section of the fine root system distal to the position of the gauge on the root. When measured synchronously, roots of the three species did not differ significantly in mean Js, although oak roots tended to have lower rates. However, Jd decreased in the sequence spruce > beech > oak in most measurement periods. Microscopic investigation revealed differences in fine root anatomy that may partly explain the species differences in Jd and Js. Oak fine roots had a thicker periderm than beech and spruce roots of similar diameter and spruce roots had fewer fine branch rootlets than the other species. Synchronously recorded Jd and Js of nearby roots of the same tree species showed large differences in flow with coefficients of variation from 25 to 150% that could not be explained by patchy distribution of soil water. We hypothesize that the main cause of the large spatial heterogeneity in root water uptake is associated with differences between individual roots in morphology and ultrastructure of the root cortex that affect root radial and root-soil interface conductivities. The high intraspecific variation in Js may mask species differences in root water uptake. Superficial roots of all species typically had about five times higher Jd than deep roots of the same species. However, Js values were similar for superficial and deep roots in beech and spruce because small diameter roots of both species were more branched in the organic layer than in mineral soil. In oak, deep roots had lower Js (maximum of 100 g m(-2) day(-1)) than superficial roots (about 1000 g m(-2) day(-1)). We conclude that temperate tree species in mixed stands have different water uptake capacities. Water flow in the rhizosphere of forests appears to be a highly heterogeneous process that is influenced by both tree species and differences in uptake rates of individual roots within a species.
منابع مشابه
Aquaporin-mediated changes in hydraulic conductivity of deep tree roots accessed via caves.
Although deep roots can contribute substantially to whole-tree water use, little is known about deep root functioning because of limited access for in situ measurements. We used a cave system on the Edwards Plateau of central Texas to investigate the physiology of water transport in roots at 18-20 m depth for two common tree species, Quercus fusiformis and Bumelia lanuginosa. Using sap flow and...
متن کاملSubstrate supply, fine roots, and temperature control proteolytic enzyme activity in temperate forest soils.
Temperature and substrate availability constrain the activity of the extracellular enzymes that decompose and release nutrients from soil organic matter (SOM). Proteolytic enzymes are the primary class of enzymes involved in the depolymerization of nitrogen (N) from proteinaceous components of SOM, and their activity affects the rate of N cycling in forest soils. The objectives of this study we...
متن کاملPhysico-chemical features of Aqueous extract of acanthophyllum laxiusculum roots from natural steppe habitats of Iran: Evaluating surface activity and thermal behavior of partially purified extract
Acanthophyllum laxiusculum is one of the most widely distributed species of the genus in Iran that flourishes in steppe and mountainous regions of the country. In the present study, water-soluble content of A. laxiusculum roots was extracted by boiling water and further successively purified partially by a defined solvent system. Surface tension measurements revealed the ability of plant extrac...
متن کاملEffect of tree roots on water infiltration rate into the soil
ABSTRACT- To study the effect of tree roots on increasing water infiltration in soil and also to determine and assess the coefficients of different infiltration models, some infiltration tests were performed in three tree plantation areas in Badjgah, Fars province with different soil textures (clay loam for pear plantation, sandy loam for grape plantation, loamy sand for pine trees). In each pl...
متن کاملThe Uptake of Amino Acids by Microbes and Trees in Three Cold-Temperate Forests
Amino acids are emerging as a critical component of the terrestrial N cycle, yet there is little understanding of amino acid cycling in temperate forests. This research studied the uptake and turnover of amino acid N by soil microbes and the capacity of forest trees to take up the amino acid glycine in comparison to NH4 and NO3. This research was conducted in three temperate forests located in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Tree physiology
دوره 24 12 شماره
صفحات -
تاریخ انتشار 2004